Background

Geostationary Earth Orbit (GEO) satellites have been widely used in satellite navigation systems such as Beidou and some augmentation systems of GPS. Because GEO satellites are almost stationary relative to the earth, some multipath signals are varying very slowly. This feature will cause the so-called “standing multipath” [1], which can dramatically decrease the accuracy of positioning. Multipath errors are related to the characteristics of the signal, the processing method in the receiver, the antenna and signal receiving scenario. These complex factors make it difficult to eliminate the multipath errors.

Some approaches combined by radio frequency (RF) and post-processing methods have been proposed to mitigate the standing multipath errors. For example, a code noise and multipath (CNMP) monitor is proposed to reduce the error on the measurements in Wide Area Augmentation System (WAS) [1]. However, it still remains some shortages.

Main Works

- We use a novel Data-Driven Time-Frequency Analysis (DDTF) method [2] to model the characteristic of the standing multipath errors.
- As an improvement of CNMP monitor, we have proposed a coefficient-adaptive filter. The coefficients of this filter are estimated according to the modeling of the standing multipath errors.

Time-Frequency Analysis

We use the measurements from the two GEO satellites in Japanese Multi-functional Satellite Augmentation System (MSAS), and analyze the Code-Minus-Carrier (CMC). However, the MSAS only transmits single-frequency signal, so the CMCs is the multipath error without ionospheric correction.

Some approaches combined by radio frequency (RF) and post-processing methods have been proposed to mitigate the standing multipath errors. For example, a code noise and multipath (CNMP) monitor is proposed to reduce the error on the measurements in Wide Area Augmentation System (WAS) [1]. However, it still remains some shortages.

From the formulas, we can see that they actually form a filter with constant coefficients. According to our analysis of the standing multipath, this filter may not work very well, because the characteristics of the multipath is time-varying.

With the modeling by DDTF, we have proposed a adaptive filtering for mitigation of standing multipath. The main iteration of our filter is:

\[M_{i+1} = \alpha M_i + (1 - \alpha) (C_i - \Phi_i - \Delta \tau_i) \]

where the coefficient \(\alpha \) is calculated from the DDTF analysis.

This figure shows the results of the proposed adaptive filter. The green line is the multipath. The blue line is the residual processed by CNMP method. The red curve is the residual of the improved filter.

Conclusion

- The DDTF method can model the standing multipath of the signal from GEO satellites well.
- Our proposed adaptive filtering whose coefficient is calculated from DDTF can significantly eliminate the standing multipath.

Adaptive Filtering

The CNMP monitor in [1] is acting as:

- The CNMP monitor in [1] is acting as:

\[CMCB(t_i) = C_i - \Phi_i(t_i); CMCB(t) = 0 \]

\[CMCB(t) = CMCB(t-T) + \frac{1}{N} \left(C(t) - \Phi(t) - CMCB(t-T) - \Delta \tau(t) \right) \]

\[CMC(t) = C(t) - \Phi(t) - \Delta \tau(t) - CMCB(t) \]

where \(\Delta \tau(t) = \Delta CMC(t) - \Delta CMC(t-T) \)

These results have inspired the construction of the adaptive filter to mitigate the multipath in GEO code measurements better.

References